fbpx

Trigonometri – retvinklet trekant (1:3). Beregning af sidelængder ved Pythagoras.

Formålet med denne artikelserie er, at gøre den studerende i stand til at løse eksamensopgaver omhandlende retvinklede trekanter i forbindelse med den skriftlige matematikeksamen på niveau c. Vi vil i denne artikel give dig løsningen til, hvordan opgavespørgsmål i retvinklede trekanter skal gribes an.

Vi gennemgår i artikelserien de typeopgaver, du kan blive stillet overfor til den skriftlige matematikeksamen. Du vil i hovedtræk kunne komme ud for følgende, når du skal løse en eksamensopgave omkring retvinklede trekanter:

  • Beregning af sidelængder i den retvinklede trekant ved hjælp af Pythagoras
  • Beregning af vinkler og sidelængder i den retvinklede trekant ved hjælp af sinus, cosinus og tangens.
  • Beregning af den retvinklede trekants areal

Hvis man holder ovenstående for øje, vil man på relativt hurtigt kunne lære fremgangsmåden til hvordan typeopgaverne til eksamen skal gribes an. Vi vil i denne artikel gennemgå hvordan man beregner sidelængder ved hjælp af Pythagoras´ læresætning. Vi anvender eksempler som gerne skal bidrage til forståelsen.

Eksempel på løsning af eksamensopgave i retvinklede trekanter

Herunder er afbildet en retvinklet trekant ABC, hvor nogle af trekantens mål er oplyst.

Retvinklet trekant 1 artikel

Træn eksamensopgaver i geometri og scor topkarakter. Succesrig og anerkendt matematik træner. Kom igang gratis og se resultater.
Opret bruger nu

 

Beregning af  sidelængder ved hjælp af Pythagoras

I ovenstående retvinklede trekant kan det ses, at længden af BC = 5 og længden af siden AC = 8, og man skal bestemme længden af AB. For at kunne løse spørgsmålet, skal man gøre sig klart, hvad man vil bruge for at finde længden af AB, når man har fået oplyst trekantens to kateter.
For at kunne finde længden af AB kan man anvende Pythagoras´ læresætning, da man kender to sider i den retvinklet trekant. Pythagoras´ læresætning er;

a2 + b2 = c2

hvor a og b er trekantens kateter, og c er trekantens hypotenuse. Hypotenusen er kendetegnet ved, at være trekantens længste side (i vores eksempel er det denne side vi ikke kender). Hvis man ønsker at beregne længden af AB (hypotenusen), så kan man derfor indsætte vores værdier i Pythagoras´ læresætning, hvorefter vi løser ligningen med en ubekendt. Vi starter først med at navnegive trekantens sider. Ud fra vinkel A bliver modstående sidestykke lille a osv. Se figuren herunder;
Retvinklet trekant 2 artikel

Da vi nu har defineret sidestykkerne i trekanten, kan vi indsætte værdierne i Pythagoras´ læresætning og beregne længden af AB. Beregningen ses herunder;

 

a2 + b2 = c2                                               =>

52 + 82 = c2                                               =>

25 + 64 = c2                                              =>

89 = c2                                                      =>
Retvinklet trekant 3 artikel                                         =>
c = 9,43

 

Du er igang på under 2 sekunder. Gør som andre studerende – Brug Danmarks førende matematik træner og hæv din karakter. Du får gratis 8 opgaver og 1 eksamen.

Opret med Facebook

 

Når man kender to sidelængder i en retvinklet trekant, så vil man altid kunne beregne den ukendte sidelængde ved hjælp af Pythagoras.

Hvis vi nu ændrer lidt på vores eksempel, så vi nu kun kender sidelængderne BC = 5 (en katete) og AB = 9,43 (hypotenusen), og skal bestemme sidelængden AC (katete), kan vi igen anvende Pythagoras´ læresætning for at finde den ukendte sidelængde.

Retvinklet trekant 4 artikel
Vi starter igen med, at definerer sidestykkerne i trekanten ved at navngive dem, så det modstående sidestykke ud fra vinkel A bliver lille a osv. Det er gjort i figuren herunder;
Retvinklet trekant 5 artikel

 

Vi har nu fået defineret sidestykkerne, hvorefter vi indsætter i Pythagoras for at finde længden af AC;

a2 + b2 = c2                                             =>

52 + b2 = 9,432                                        =>

25 + b2 = 88,925                                     =>

b2 = 88,925 – 25                                      =>
Retvinklet trekant 6 artikel                   =>
b = 8

Igen ændrer vi lidt på vores eksempel, så vi nu kun kender sidelængderne AC = 8 (en katete) og sidelængden AB = 9,43 (hypotenusen), og skal beregne sidelængden BC (katete). Vi anvender igen Pythagoras for at finde den ukendte sidelængde.

Retvinklet trekant 7 artikel

For at finde sidelængden BC definerer vi igen sidestykkerne i trekanten, så modstående sidestykke ud fra vinkel B bliver lille b osv. Det er vist i figuren herunder;
Retvinklet trekant 8 artikel

Sidestykkerne er defineret, og vi indsætter i Pythagoras for at bestemme sidelængden BC;

a2 + b2 = c2                                             =>

a2 + 82 = 9,432                                        =>

a2 + 64 = 88,925                                     =>

a2 = 88,925 – 64                                      =>
Retvinklet trekant 9 artikel                   =>
b = 5

 

Vil du vide mere om Pythagoras?

Her har vi sørget for du kan læse mere om Pythagoras og hans historie. Her kan du samtidigt finde flere links til andre relevante og spændende artikler.

Herunder har vi samlet endnu flere artikler, som kan være relevante for dig:
Sådan får du topkarakter i matematik, Lær at blive den bedste til potens funktion, Få styr på renters rente – kapitalfremskrivning!

Share:

147 thoughts on “Trigonometri – retvinklet trekant (1:3). Beregning af sidelængder ved Pythagoras.

  1. Основной задачей нашей компании является бесперебойная поставка товаров из Китая на внутренний рынок Российской Федерации. Обеспечивая размещение заказов на производство товаров в Китае и осуществляя самостоятельную логистику с проведением всех необходимых процедур таможенного оформления во Владивостоке, оптимизируя при этом расходы, мы готовы предложить Вам полный комплекс ВЭД услуг, в том числе поиск товаров и проведение оплат в иностранной валюте.

  2. I have been exploring for a little bit for any high
    quality articles or weblog posts in this kind of house
    . Exploring in Yahoo I at last stumbled upon this site. Studying
    this information So i’m satisfied to show that I have an incredibly good uncanny feeling I discovered just what I needed.
    I such a lot for sure will make sure to do not omit this website and give it
    a look regularly.

  3. I love your blog.. very nice colors & theme. Did you create this website yourself
    or did you hire someone to do it for you? Plz answer back as I’m looking to design my own blog and would like
    to find out where u got this from. cheers

  4. Hello, i think that i saw you visited my blog so i came to “return the favor”.I am
    attempting to find things to enhance my web site!I suppose its
    ok to use some of your ideas!!

  5. Greetings from Idaho! I’m bored at work so I decided to check
    out your site on my iphone during lunch break. I really like
    the information you provide here and can’t wait to take a look
    when I get home. I’m surprised at how quick your blog loaded on my
    phone .. I’m not even using WIFI, just 3G .. Anyways,
    fantastic site!

  6. Hi, Neat post. There’s a challenge together with your site in internet explorer, may
    test this? IE nonetheless is definitely the marketplace leader and a huge component of other
    people will leave out your excellent writing due to this challenge.

    My blog post: passport wallet

  7. My brother suggested I may like this web site. He was once entirely right.
    This post actually made my day. You can not consider simply
    how so much time I had spent for this info! Thank you!

  8. Your style is so unique compared to other folks I’ve read stuff from.
    Many thanks for posting when you’ve got the opportunity,
    Guess I’ll just bookmark this page.

  9. Today, I went to the beach with my kids. I found a sea shell and gave it to my 4 year old daughter and
    said “You can hear the ocean if you put this to your ear.” She
    placed the shell to her ear and screamed.
    There was a hermit crab inside and it pinched her ear.
    She never wants to go back! LoL I know this is entirely off topic but I had to tell someone!

  10. Chris,Thank you for reviewing this website. It seems that it does work, but the amount of money they will pay does not match up the amount of hours we will be investing. Do not get me wrong, I do enjoy hard work, but I do want money back in return.it seems that you are at the mercy of other members in order to make money. I will rather create my own website and have my faith in my hands. Thank you for the information.

  11. We are a group of volunteers and opening a new scheme in our community.

    Your web site offered us with valuable information to work on.
    You’ve done an impressive job and our whole community will be grateful to you.
    0mniartist asmr

Skriv et svar

Din e-mailadresse vil ikke blive publiceret. Krævede felter er markeret med *